
International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1976
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Analytical Comparison of Manual and Automatic
Software Testing Using Markov Chain Model

Raj Kumari, Dr. Roshan Lal Hiranwal, Dr. Ashish Shah

Abstract: Model based testing is the application of model base design and optionally also executing artifact to perform Software testing. Model can be
used to represent the desired behavior of a system under test (SUT) or represent testing strategies and a test environment. A model describing SUT is
usually an abstract, partial presentation of the system under test desired behavior. Test cases derived from such a model are functional test on the same
level of abstraction as the model. The test cases are collectively known as abstract test suite. A Markov chain (discrete-time Markov chain or DTMC),
named after Andrey Markov, a Russian mathematician is a random process that undergoes transitions from one state to another on a state space. It
must possess a property that is usually characterized as "memorylessness". The probability distribution of the next state depends only on the current
state and not on the sequence of events that preceded it. This specific kind of "memorylessness" is called the Markov property.

Index Terms— Markov Chain Model, MarkovDG, Software under Test, Discrete Time Markov Chain, Memorylessness, Test Cases

—————————— ——————————

1 INTRODUCTION
A discrete-time random process involves a system which is
in a certain state at each step, with the state changing
randomly between steps. The benefit of using this concept
is that it saves lots of the efforts done by the software tester
to generate the input sequence for testing the software. It
also helps in saving time and costs of hiring the expert.

As the Markov Chain Model based on state spaces that
change from one state to another depending on present
state not on past state. For example, Markov chain model of
baby’s behavior include “playing”, “eating”, “sleeping”,
and “crying” as states.

Figure 1: Depicts the baby’s behavior of states.

Markov chain model tells us probability of transitioning
from one state to another state that a baby currently crying
will engaged into playing, eating or sleeping.

————————————————
• Raj Kumari, Research Scholar, Department of Computer Science, Mewar

University, Chittorgarh, Rajasthan, India, E-mail:rajsihag83@gmail.com
• Dr. Roshan Lal Hiranwal Visiting Faculty, Mewar University,

Chittorgarh and Associate Professor, Govt. P.G College
Karnal(Haryana),India, E-mail:roshanhiranwal@gmail.com

• Dr. Ashish Shah, Visiting Faculty, Mewar University, Chittorgarh,
Rajasthan, India, E-mail:asheesh.shah@gmail.com

Since the system changes randomly, it is generally
impossible to predict with certainty the state of a Markov
chain at a given point in the future. However, the statistical
properties of the system's future can be predicted. In many
applications, it is these statistical properties that are
important.

Similarly Markov Chain model can be used for Software
Testing without knowing about previous state. Here in our
case states may refer to the specific functions or actions
performed by the software application. Markov chain
model use the concept of “memorylessness” such that it
does not bother about previous state whether it is in
whatever state. The main idea behind choosing the Markov
chain model is that memorylessness. According to Markov
Property, Researcher trying in the automation of software
testing, that it is not necessary to bother about previous
output received. In the simple word the test cases
generated on the basis of random inputs that does not links
with the previous state or output received.

The actual idea is that to design the test cases for testing a
software application, tester may follows and cares about
previous sequence of states so that he can test the software
application effectively, which is very time consuming and
requires lots of experience and knowledge about the
software application.
With the Markov Chain Model’s concept of
“memorylessness”, researcher wants to develop a tool that
generates the test cases with the concept of Markov
Property. The Test Data in test cases generated randomly
within the domain of the input.

2 UTILITY OF PROPOSED MODEL

Testing a software application is one of the most important
but time consuming task. In software testing, Test Cases are

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1977
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

drawn from the sample of possible uses according to the
sample distribution. The Markov Chain Model works with
finite state machines. In similar fashion, states of use of
software are represented as states in Markov Chain Model.

Manual Testing requires lots of mind exercise whether
some tools can also requires to do mind exercise to test an
application. Our tool MarkovDG generates test cases for all
the classes from the domain randomly so that each and
every perspective of the application should be tested and
find out more bugs so that application should fulfill the
organization needs.

These are the following benefits for using MarkovDG:

• Saves 50% of test planning. Test Planning is a plan
about how to execute the test to find the errors
and bugs in an application. This tool based on
requirements of the application to be tested given
by the user to the tool generate the test cases with
the property of “memorylessness”.

• Identify the bugs within the domain. Domain of
the application is the possible inputs that can be
input to the application. MarkovDG has the
capability to identify the bugs within the domain.

• Identify the gaps in requirements. By identifying
the errors and bugs our research helps to find the
‘discrepancies’ in the application.

3 OPERATING MARKOVDG

MarkovDG is developed to generate the data with the
concept of memorylessness based on the Markov Chain
Model. Markov Chain Model demonstrates that the data is
randomly used to input for testing of the software.
Analytical results associated with Markov chains facilitate
informative analysis of the sequences. The test input
sequences generated from the chain and applied to the
software are themselves a stochastic model and are used to
create a second Markov chain to encapsulate the history of
the test, including any observed failure information.

Figure 2: The above figure depicts the flow to operate the
MarkovDG Tool.

A sequence of test inputs are to be given to generate
different test cases.A number of test cases facilitates us to
distinguish the appropriate selection of test data and the
result thus obtained is as per the requirement of the user.

The Figure 2 shows how to generate test data based on the
random selection of inputs and decision taken based on the
selection of a range of input sequences.On the basis of
given inputs the decision based on the random selection of
data is to be taken into consideration to generate the
different test case.

It is the choice of the user for selection of a number of
inputs on the random basis and to generate the number of
test cases based on multiple inputs and comparing the
results thus obtained.The decision is upto the user whether
the inputs suit for the appropriate result on the basis of her
choice of selection of inputs to generate the test data.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1978
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Snapshot 1: The above snapshot describes the operational
requirement to be feeded into the MarkovDG tool.

The schema can be easily defined with the MarkovDG Data
generator for Software Testing. Tester should specify the
details according to the software to be tested.

4 EMPIRICAL STUDY

An Empirical study performed on Elevator or lift Software.
It is one of the well known transportation of goods and
people between floors or level of a multi floors building. To
operate and manage the lift appropriately need for the
software is must. Researcher chooses the elevator software
to be tested using the concept of ‘memoryless’ and
‘nonmemoryless’ means MarkovDG and manually
respectively.

Following is the Test Cases generated manually:

T
e
s
t

C
a
s
e

Test Steps Pre
Condition Expected Result

S
t
a
t
u
s

1
1. Click on
the exe file.

User should
have
application(
exe)

Application window
should be opened

P
a
s
s

2
1. Launch the
application.
2. Press 'S'

Application
window is
opened.

It should start from '0'
floor

P
a
s
s

3
1. Press '4'.
2. Press 'S'

Application
window is
opened and
lift is at floor
'0'.

It should go at floor '4'
and show message
'Door opening. Door
Closed'.

P
a
s
s

4
1. Press '0'.
2. Press 'S'

Application
window is
opened and
lift is at floor
'4'.

It should go at floor '0'
and show message
'Door opening. Door
Closed'.

P
a
s
s

5
1. Press '1',
'6', '8', '9'
2. Press 'S'

Application
window is
opened and
lift is at floor
'0'.

1. It should go up at
floor '1' and show
message 'Door
opening'
2. It should go up at
floor '6' and show
message 'Door
opening'
3. It should go up at
floor '8' and show
message 'Door
opening. Door Closed'
4. It should go up at
floor '9' and show
message 'Door
opening. Door Closed'

P
a
s
s

6
1. Press '2',
'3', '7', '9'
2. Press 'S'

Application
window is
opened and
lift is at floor
'5'.

1. It should go down at
floor '3' and show
message 'Door
opening'
2. It should go down at
floor '2' and show
message 'Door
opening'
3. It should move up
now
4. It should go up at
floor '7' and show
message 'Door
opening. Door Closed'
5. It should go up at
floor '9' and show
message 'Door
opening. Door Closed'

P
a
s
s

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1979
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

7
1. Press '3',
'4', '6', '7'
2. Press 'S'

Application
window is
opened and
lift is at floor
'9'.

1. It should go down at
floor '7' and show
message 'Door
opening'
2. It should go down at
floor '6' and show
message 'Door
opening'
3. It should go down at
floor '4' and show
message 'Door
opening. Door Closed'
4. It should go down
at floor '3' and show
message 'Door
opening. Door Closed'

P
a
s
s

8
1. Press '2',
'3', '6', '7'
2. Press 'S'

Application
window is
opened and
lift is at floor
'5'.

1. It should go up at
floor '6' and show
message 'Door
opening'
2. It should go up at
floor '7' and show
message 'Door
opening'
3. It should move
down now
4. It should go down at
floor '3' and show
message 'Door
opening. Door Closed'
5. It should go down
at floor '2' and show
message 'Door
opening. Door Closed'

P
a
s
s

9

1. Press '2',''6'
and '8'.
2. Press 'S'
3. Elevator is
at floor '8'
and press '5'
4. Press 'S'

Application
window is
opened and
lift is at floor
'9'.

1. It should go at floor
'8' and show message
'Door opening'
2. It should go at floor
'6' and show message
'Door opening'
3. It should go at floor
'5' and show message
'Door opening'
4. It should go at floor
'2' and show message
'Door opening'

F
a
il

1
0

1. Press 'X'
Application
window is
opened.

Application window
should be closed.

P
a
s
s

Table 1: Shows The Test Cases and Results
received

Now move to the MarkovDG, The Snapshot given below
depicts the test cases generated via MarkovDG Tool.

T
e
s
t
C
a
s
e

Test Steps Pre
Condition

Expected Result

S
t
a
t
u
s

1
1. Press ‘3’
2. Press 'S'

Application
window is
opened and
lift is at floor
'0'.

1. It should go up at
floor '3' and show
message 'Door
opening'

P
a
s
s

2
1. Press ‘7’,
'4', '9', '5'
2. Press 'S'

Application
window is
opened and
lift is at floor
'3'.

1. It should go up at
floor '4' and show
message 'Door
opening'
2. It should go up at
floor '5' and show
message 'Door
opening'
3. It should go up at
floor '7' and show
message 'Door
opening. Door Closed'
4. It should go up at
floor '9' and show
message 'Door
opening. Door Closed'

P
a
s
s

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1980
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

3
1. Press ‘7’
2. Press 'S'

Application
window is
opened and
lift is at floor
'9'.

1. It should go down at
floor '7' and show
message 'Door
opening. Door Closed'

P
a
s
s

4
1. Press ‘4’,
'1'
2. Press 'S'

Application
window is
opened and
lift is at floor
'7'.

1. It should go down at
floor '4' and show
message 'Door
opening. Door Closed'
2. It should go down at
floor '1' and show
message 'Door
opening. Door Closed'

P
a
s
s

5
1. Press ‘9’,
'0','6','1','3'
2. Press 'S'

Application
window is
opened and
lift is at floor
'1'.

1. It should go down at
floor '0' and show
message 'Door
opening'
2. It should move up
now
3. It should go up at
floor '3' and show
message 'Door
opening. Door Closed'
4. It should go up at
floor '6' and show
message 'Door
opening. Door Closed'
5. It should go up at
floor '9' and show
message 'Door
opening. Door Closed'

F
a
il
s

6
1. Press ‘7’,
'1','9','2','3'
2. Press 'S'

Application
window is
opened and
lift is at floor
'9'.

1. It should go down at
floor '7' and show
message 'Door
opening. Door Closed'
2. It should go down at
floor '3' and show
message 'Door
opening. Door Closed'
3. It should go down at
floor '2' and show
message 'Door
opening. Door Closed'
2. It should go down at
floor '1' and show
message 'Door
opening. Door Closed'

F
a
il
s

7
1. Press ‘1’,
'4','6','3'
2. Press 'S'

Application
window is
opened and
lift is at floor
'5'.

1. It should go up at
floor '6' and show
message 'Door
opening'
3. It moves down now.
2. It should go down at
floor '4' and show
message 'Door
opening'
3. It should go down at
floor '3' and show
message 'Door
opening. Door Closed'
4. It should go down
at floor '1' and show
message 'Door
opening. Door Closed'

P
a
s
s

8
1. Press ‘9’,
'0','3','2','8'
2. Press 'S'

Application
window is
opened and
lift is at floor
'1'.

1. It should go down at
floor '0' and show
message 'Door
opening'
2. It should move up
now
3. It should go up at
floor '2' and show
message 'Door
opening'
4. It should go up at
floor '3' and show
message 'Door
opening. Door Closed'
5. It should go up at
floor '8' and show
message 'Door
opening. Door Closed'
6. It should go up at
floor '9' and show
message 'Door
opening. Door Closed'

P
a
s
s

9
1. Press ‘3’
2. Press 'S'

Application
window is
opened and
lift is at floor
'9'.

1. It should go down at
floor '3' and show
message 'Door
opening'

P
a
s
s

1
0

1. Press ‘4’,
'2'
2. Press 'S'

Application
window is
opened and
lift is at floor
'3'.

1. It should go up at
floor '4' and show
message 'Door
opening'
2. It should go down at
floor '2' and show
message 'Door
opening'

F
a
il
s

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 1981
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Table 2: depicts the behavior of Test Cases generated via
MarkovDG Tool

5 FINAL RESULTS

The final results of the research are so promising. The
comparison analysis between both the test cases generated
manually and automatically is different. In manual test case
execution, only one failure occurs and in the auto generated
with MarkovDG there occurs three failures. So here the
researcher’s study reveals that the MarkovDG generated
test cases cover many aspects and able to find out more and
more bugs.

6 FUTURE SCOPE

Finding issues in the product is not alone the work of a
tester in that company, He/she should act smart and
automate the regular stuffs that are to be done by the
testers. This is about solving the problems along with the
developers and business people.

The researchers conclude that we should eliminate manual
testing all together because if we have to run the tests more
than about 3 times, it’s just cheaper to start out automating
it, so we can run the tests repeatedly with less (hopefully
close to 0) effort. There is a bit of manual testing buried in
creating only automated tests, because sometimes we just
have to "try stuff" to see how it actually works. But the
focus should be (in my opinion) automate all the testing.

In this research work the tool is developed to generate test
cases to automate the testing with respect to find out the
bugs. Some of the considerations are to identify the case
study for biggest software failures and how the testing can
automated and executed to find out more and more errors/
bugs/ failures. Our study reveals that the test case
generated via MarkovDG Tool is best and helps to find out
many more bugs. The research can be enhanced to generate
test cases for the testing using fuzzy logic, ontology etc.
These areas may produce more viable solutions to software
testing.

 REFERNCES

1. A. S. Andreou, K. A. Economides and A. A.
Sofokleous, “An automatic software test-data
generation scheme based on data flow criteria and
genetic algorithms”, 7th IEEE International
Conference on Computer and Information
Technology, pp. 867-872, 2007.

2. Balakrishnan, N., Mohanty S. G., Aki S. Start-up
demonstration tests under Markov dependence
model with corrective actions, Annals of the Institute
of Statistical Mathematics, 49:155–169,1997.

3. J. A. Whittaker, “What is Software Testing? And Why
Is It So Hard?” IEEE Software, January 2000, pp. 70-
79.

4. J. A. Whittaker and J. H. Poore, “Markov Analysis of
Software Specifications”. ACM Transactions on
Software Engineering Methodology. V. 2, pp. 93-106,
January 2002.

5. J. Whittaker and M. Thomason, “A Markov Chain
Model for Statistical Software Testing,” IEEE Trans.
Software. Eng., vol. 20, no. 10, pp. 812–824, Oct. 1994.

6. P. McMinn, “Search-based software test data
generation: a survey”, Software Testing, Verification
& Reliability, Vol. 14, No. 2, pp. 105–156, 2004.

7. S. Desikan and G. Ramesh, “Software testing
principles & practices”, Pearson Education, 2007.

8. Yashodhan Kanoria, Subhasish Mitra and Andrea
Montanari “Statistical Static Timing Analysis uses
Markov Chain Monte Carlo” in 2010 EDAA.

9. Yi Wan, Chengwen WU “Software reliability model
based on stochastic theory” in 2009 IEEE.

10. Z. W. Liang, W. H. Sen, Z. Jun and X. D. Jian, “Novel
particle swarm based on stochastic theory” in 2009
IEEE.

 IJSER

http://www.ijser.org/

